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Keizer's critique on extended irreversible thermodynamics is responded and 
qualified so as to remove misleading points of his statements. It is particularly 
pointed out that contrary to his assertion, fluctuating irreversible ther- 
modynamics may be regarded as being included in extended irreversible ther- 
modynamics as a special case, since it is derivable from the latter when the 
relaxation times of fluxes are comparatively shorter than the hydrodynamic 
relaxation time and the initial conditions for the evolution equations are 
random. 
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ation. 

In a recent paper ~1) entitled "On the relationship between fluctuating irrever- 
sible thermodynamics and 'extended' irreversible thermodynamics" published 
in this journal, J. Keizer presents criticisms on extended irreversible ther- 
modynamics (EIT), based on his study on the relationship of EIT to his 
theory of fluctuating irreversible thermodynamics (FIT). I believe that his 
criticisms are misleading unless qualified by conditions which he has not 
made explicit and that his conclusion is logically inverted. 

The basic aim of EIT (2-6) is in developing a formalism for theory of 
irreversible processes occurring far from equilibrium. In the conventional 
theory ~7-9) of linear irreversible thermodynamics and Keizer's theory, ~1~ the 
Gibbs space is spanned by a set of variables consisting of entropy and 
conserved--extensive in Keizer's terminology--variables. In EIT the Gibbs 
space is extended to include fluxes of energy, momentum, and masses and 
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any other fluxes and equivalents deemed necessary for appropriate 
description of the macroscopic phenomenon in hand. We will call the space 
the nonequilibrium Gibbs space and the variables the nonequilibrium Gibbs 
variables. Therefore, it is natural to regard the nonequilibrium entropy as a 
surface in the extended Gibbs space as we regard the equilibrium entropy as 
a surface in the equilibrium Gibbs space. 

The EIT formalism has been investigated with kinetic theory models in 
a number of directions and in the phenomenological approach as well. It is 
invariably shown in such investigations that the EIT formalism not only 
represents an extension of the existing theory of linear irreversible ther- 
modynamics based on the local equilibrium hypothesis, but also enables us 
to develop theories of nonlinear transport processes in a way fully consistent 
with the thermodynamic laws. Such theories of nonlinear transport processes 
are shown to be capable of explaining a number of different classes of 
experimental data. tl 1-16) 

Despite his demonstration, albeit arguable, that FIT is derivable from 
EIT, Keizer (1) concludes that the EIT formalism is redundant and its 
generality is not as clear as it is in the case of the conserved variable 
theories, e.g., FIT. The conservation and evolution equations for the none- 
quilibrium variables have been derived (5) from, and justified by, the 
Boltzmann equation and its generalization unlike the "canonical" equations 
in FIT, e.g., Eq. (1) in Ref. 1. Although it is claimed (~) that this "canonical" 
equations are based on "mechanistic statistical theory," there has never been 
a derivation or justification by a kinetic equation such as the Boltzmann 
equation. In fact, a fluctuating Boltzmann equation is taken as an example 
for the "canonical" forms in his theory, (1~ and the fluctuating Boltzmann 
equation is clearly a postulate. Furthermore, its validity has not been studied 
in light of experimental data as extensively as for the Boltzmann equation. 
Therefore, Eq. ( i )  in Ref. 1, i.e,, the "canonical" forms, must be taken as 
postulates of the theory and their justification is necessarily a posteriori .  
Since EIT can be formulated with postulates in the axiomatic approach, (Sb) 
the argument between the two schools of thought could boil down to the 
questions of whether one set of postulates is more useful, or it is more or less 
logically complete, etc. Since EIT is still in the stage of development, it is 
premature to make an unequivocal judgment with only a limited calculation 
as he has done at this point. There are other reasons for the invalidity of his 
statements. They will be presented below. 

Keizer claims that Eq. (1) in Ref. 1 can be derived from the 
Maxwell-Cattaneo equations if the relaxation times are very short and if the 
initial conditions are random. Therefore, one may take the Maxwell-Cat- 
taneo equations as the precursor to Eq. (1) in Ref. 1 which is also assumed 
in FIT, and may understand the physical significance of his Eq. (1). Even if 
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one accepted his derivation at its face value, it would then take an inversion 
of logic to declare "redundant" the theory that takes the Maxwell-Cattaneo 
equations as one of its basic elements and the very theory that he uses to 
derive his theory. Moreover, the Maxwell-Cattaneo equations are a special 
case of more general evolution equations postulated in EIT. For example, in 
the case of non-Newtonian fluids the Maxwell equation (iv) for the stress 
tensor is incapable of adequately accounting for the non-Newtonian behavior 
of viscosity, and a more general nonlinear evolution equation for the stress 
tensor is required. "1) The equation must have a highly nonlinear dissipative 
term, (H) e.g., 

Al l )= _(fig)-1 ~ : P(sinh ~ /~ '~ )  (1) 

where fl--  1/k s T, g and ~ are parameters, P the traceless part of the stress 
tensor, and ~ is a certain quadratic form ofP .  The above form for 
dissipative terms is merely an example indicating what sort of nonlinear 
equations can be involved. When the factor (sinh ~ / ~ )  is put equal to 
unity, the dissipative term becomes that of the Maxwell model for 
viscoelasticity, and the evolution equation becomes the Maxwell equation. It 
was shown (1~-13) that this form (1) for the dissipative term can excellently 
account for the shear rate dependences of viscosities of real materials. With 
the dissipative term as given by (1), the evolution equation for P is no longer 
linear with respect to P, in contrast to the case of the Maxwell equation, and 
the stress tensor does not generally relax exponentially in time. Conse- 
quently, Keizer's analysis, (1) which so crucially depends on an exponential 
relaxation of the fluxes (e.g., P) does not apply to nonlinear flux evolution 
equations [e.g., with (1) for the dissipative term], and the connection 
between FIT and EIT is lost, making his conclusion on the redundancy of 
EIT completely invalid. Recent studies ~14-16) of some examples of nonlinear 
evolution equations for processes in semiconductors and non-Newtonian 
fluids show that there can be limit cycles of fluxes oscillating with well- 
defined, fixed frequencies, which render exponential relaxations of fluxes 
impossible. In that case, even the stochastic (random) initial conditions are 
shaken off by the limit cycles of fluxes and the extensive variables may fluc- 
tuate or oscillate for an entirely different set of reasons. In EIT, if the 
extensive variables and fluxes fluctuate or oscillate, they do so because of the 
intrinsic property of the system, not because of an external agency or 
something unknown to us as would be the case with FIT. This clearly shows 
that EIT does not redundantly duplicate FIT. In fact, FIT may be justified 
with the EIT formalism as Keizer has attempted and therefore may be 
regarded as included in EIT. 

It is true that the EIT formalism reduces to that of the conventional 
linear irreversible thermodynamics over a very short time scale (~10-1~ sec 
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or so), if the flux relaxations are described by a set of linear differential 
equations such as the Maxwell-Cattaneo equations as shown by Keizer. This 
is already recognized in EIT. tSb) It also reduces to the theory based on the 
local equilibrium hypothesis, if the flux evolutions are steady, that is, if the 
time derivatives of the fluxes vanish, or if there exists a stable steady state to 
which the system tends in a time span sufficiently long, but shorter than the 
hydrodynamic relaxation time. In this case the extended Gibbs relation in 
EIT becomes the conventional local equilibrium Gibbs relation. However, 
the constitutive relations implied by the steady state evolution equations 
could be as nonlinear as the degree of nonlinearity of the dissipative terms 
taken. In the case of Maxwell-Cattaneo equations for the evolution 
equations the constitutive relations at the steady state are simply the linear 
force-flux relations postulated in the conventional theory of linear irrever- 
sible thermodynamics and therefore we recover the latter. Clearly, the EIT 
formalism not only liberates us from the constraint of linearity, but also 
brings us an extended space to structure a theory in. If a way to freedom is 
called "redundant," I am happy to take it any time and under any cir- 
cumstances. 

Keizer expresses another "concern with the reasoning o f '  EIT since it 
does not produce "an exact result for the correlations of the fluxes at 
equilibrium." In EIT the theory develops with a set of deterministic 
differential equations for macroscopic variables including fluxes. Since the 
fluxes are described deterministically, their couplings are not stochastic, but 
deterministic, and there is no compelling reason to invoke a stochastic 
theory, although there is always a possibility that the initial conditions might 
be random. Note that such random initial conditions become irrelevant for 
some nonlinear evolution equations, as was mentioned in a previous 
paragraph. Note also that the distribution of initial conditions can be dealt 
with quite separately from the dynamical evolution of a deterministic 
macroscopic process. One should make a clear distinction between a 
stochastic evolution and a deterministic evolution. Some authors ~18~ in EIT 
adapted the EIT formalism to the stochastic theory formalism by using the 
Maxwell-Cattaneo equations in conjunction with the distribution function 
expanded in fluctuating nonequilibrium Gibbs variables and then calculated 
flux-flux correlation functions by using the distribution function. Such a 
calculation is not absolutely required for implementing the EIT formalism to 
describe macroscopic transport processes. Therefore, any difference between 
the conventional and the EIT fluctuation theory results should not bear a 
crucial significance against EIT. In this connection Keizer claims that his 
equation (29) in Ref. 1 is exact: 

GTj = (a~(O ) ~ )  = - k ~ ( ~  S / ~ a  )Z ' (2) 
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It must be clearly noted that this formula is exact only under a pair of 
postulates that the entropy is a function of extensive variables--in Keizer's 
sense--and some bath variables which are kept constant and that the 
distribution function is given by 

W=.Ooexp lk~' [S-~o FkXk-- S(Fo ..... F , ) ] I  (3) 

where we use the notations by Callen. (a9) Note that S is the entropy and F k 
its derivatives with respect to the extensive variables X k. Therefore, from the 
standpoint of EIT the first postulate is too restrictive and thus insufficient for 
nonequilibrium fluctuations. Consequently, Eq. (2) above cannot be a gauge 
to judge EIT against, and "exact" is not a right word to use in the present 
circumstances. (As a matter of fact, the mathematical formalism for FIT is 
not as clear and sufficiently well shaped as is hoped, and it is not an exact 
theory either.) 

Toward the end of his paper, Keizer states "These criticisms of the 
extended irreversible thermodynamic theories should not be construed as 
criticisms of the use of fluxes as variables in extended kinetic or generalized 
hydrodynamic descriptions." One is left wondering what is meant by 
extended kinetic description. We must remember that the macroscopic 
variables, fluxes included, collectively represent a macroscopic state of a 
system, and their evolution describes a macroscopic process. Since any 
macroscopic process should be subject to the second law of ther- 
modynamics - i f  one believes in thermodynamic laws--it  is essential and 
legitimate to try to incorporate the evolution of fluxes into a thermodynamic 
formalism as is attempted in EIT. Since, for example, in theory (17) of 
viscoelasticity the Maxwell model is often used, it is necessary to define 
clearly its status within the framework of thermodynamic laws. That is 
precisely what is done in EIT, and the theory of viscoelasticity fits nicely 
into the formalism of EIT, if the stress tensor is regarded as a variable for 
the nonequilibrium entropy of the system. (11-13'16) Therefore, it is difficult to 
see the logic of renouncing the incorporation of, for example, the stress 
tensor and heat flux into the formalism under the thermodynamic laws, and 
yet, when it comes to analysis of experimental data (e.g., theology), quite 
willing to take the evolution equations for the very quantities he is reluctant 
to see incorporated into the formalism. If one recognizes the necessity of flux 
evolution equations for analysis of experimental data, it is logical to bring 
them under the rules of the thermodynamics laws as is done in EIT. 

In conclusion, it is fair to say that Keizer has simply demonstrated 
(perhaps in a questionable manner) that the EIT formalism with the 
Maxwell-Cattaneo equations reduces to that of FIT, if the initial conditions 
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are regarded as random and if the relaxation times are short for fluxes. His 
demonstrat ion by no means implies that the former is redundant.  On the 
contrary, it means that the FIT formalism perhaps may be regarded as being 

included in the EIT formalism. Contrary to what is suggested by him, F IT  
does not enjoy the kinetic theory supports as does the EIT formalism at 

present and there is no substance to his suggestion that FIT is a mechanistic 

statistical theory if we understand the word mechanistic by its usual meaning 
in physics. His papers on FIT  do not support his claim of mechanistic 

statistical theory for FIT.  
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